Recursive surreal numbers.

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recursive definitions on surreal numbers

Let No be Conway’s class of surreal numbers. I will make explicit the notion of a function f on No recursively defined over some family of functions. Under some ‘tameness’ and uniformity conditions, f must satisfy some interesting properties; in particular, the supremum of the class ̆ x ∈ No : f (x) ≥ 0 ̄ is actually an element of No. As an application, I will prove that concatenation function x ...

متن کامل

Integration on Surreal Numbers

The thesis concerns the (class) structure No of Conway’s surreal numbers. The main concern is the behaviour on No of some of the classical functions of real analysis, and a definition of integral for such functions. In the main texts on No, most definitions and proofs are done by transfinite recursion and induction on the complexity of elements. In the thesis I consider a general scheme of defi...

متن کامل

Ordinal Operations on Surreal Numbers

An open problem posed by John H. Conway in [2] was whether one could, on his system of numbers and games, ' . . . define operations of addition and multiplication which will restrict on the ordinals to give their usual operations'. Such a definition for addition was later given in [4], and this paper will show that a definition also exists for multiplication. An ordinal exponentiation operation...

متن کامل

The Surreal Numbers as a Universal H-field

We show that the natural embedding of the differential field of transseries into Conway’s field of surreal numbers with the Berarducci-Mantova derivation is an elementary embedding. We also prove that any Hardy field embeds into the field of surreals with the Berarducci-Mantova derivation.

متن کامل

The Exponential-Logarithmic Equivalence Classes of Surreal Numbers

In his monograph [Gon86], H. Gonshor showed that Conway’s real closed field of surreal numbers carries an exponential and logarithmic map. Subsequently, L. van den Dries and P. Ehrlich showed in [vdDE01] that it is a model of the elementary theory of the field of real numbers with the exponential function. In this paper, we give a complete description of the exponential equivalence classes (see...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Notre Dame Journal of Formal Logic

سال: 1990

ISSN: 0029-4527

DOI: 10.1305/ndjfl/1093635498